Data Structures

Page 1 of 1
Spring 2010

Problem 09: Fraction Math

Objectives: The student will write a program that uses the Fraction data structure.

Program Description:

A list of fractions will be input. The sum and product of the fractions will be output in lowest terms.

Input:

The first line of input is an integer giving the number of cases. Each case consists of a list of fractions or integers, with one fraction or integer per line. A fraction consists of two integers separated by a forward slash ("/"). Each list is terminated with an empty line.

Output:

For each list there is a single line of output indicating the number of the list (starting at 1) followed by its sum and product, both in lowest terms. Denomintors are always positive. If the denominator is 1, the fraction should print just the numerator. Use the format shown. Extra white space on each line will be ignored.

List <number>: The sum is <list sum> and the product is <list product>.

Sample Input
Expected Output

Program Specifications

The program must use the following parts:

1. Fraction module that we developed in class. It will be used for all computations involving the Fractions as well as printing.

2. Function strToFraction(s) that converts strings to Fractions. It must handle strings in either <int> or <int>/<int> formats. This function is not a part of the Fraction class. (i.e. it is a function and not a method.)

3. Include doc strings and comments as indicated in the class handout.

Program Suggestions:

Before writing the main routine, I would write and test four comparatively simple methods:

· strToFraction(s) described above

· getFractionList() inputs and returns a single list of Fractions. (It will need to call strToFractions() in order to convert to Fractions.

· sumList(fList) returns the sum of Fractions in fList. Be sure to make it work for an empty list (it should return Fraction(0) in this case.)

· prodList(fList) returns the product of Fractions in fList. Be sure to make it work for an empty list (it should return Fraction(1) in this case.

In your test input, you could put several empty lines at the end to make sure that your program terminates correctly.

Your main routine inputs the first line to determine the number of lists to use. Then for each list you get the list and print the required line.

Problem 10: Parsing Repeating Decimals

Objectives: The student will write a subroutine that parses a string representing a repeating decimal for use in the next program.

When you first learned about repeating decimals, you learned that

7/12 = 0.57333... ,

or 7/12 = 0
[image: image1.wmf]

.

57

3

In any case, a repeating decimal can be represented as a string in the following format:

<whole>.<stem><rep>...

where whole is the (possibly empty) string representing the whole number to the left of the decimal, stem is the (possibly empty) string between decimal and the repeated part, and rep is a string with a single instance of the repeated part indicated by the elipsis ('...'). In this example, whole = "0", stem = "57", and rep = "3". Your job is to write a function parse(r) to parse a string representing a repeating decimal into these three parts. In order to avoid ambiguity, we will make the following rules regarding stems and reps:

Rules

1. The repeated string rep will occur at least twice immediately preceding the elipsis. Otherwise rep = "" (and the decimal terminates.)

2. The stem string does not end with rep.

3. The stem string is as short as possible.

4. The rep string is the shortest possible that goes with the stem string.

For example:

The decimal string '5.00123...' parses as ("5","00123","") (Rule 1)
The decimal string '3.3333...' parses as ("3","","3"),

not ("3","33","3") (Rules 2 and 3 violated)
not ("3","","33") (Rule 4 violated)
The decimal string '.08811110111101111...' parses as

("","0881111","01111")

not ("","0881111011110","1") (Rule 3 violated)
Sample Input

Expected Output

Program Specifications

Programs must have the following parts:

1. Function finalPattern(s,pat) that returns (stem, n) where string

s = stem + n*pat, and stem does not end with pat.

(Note that this is basically your "Final Pattern" program converted to a function.

2. Function minStemPat(s) that returns (stem,pat) where stem is the stem of minimal length and pat the minimimal pattern that gives the stem. (This function should call finalPattern(s,pat) where pat goes through all possible endings of string s, and keeps track of the smallest stem that is found.

Program Suggestions:

Before writing the main routine, I would write and test three comparatively simple methods:

· finalPattern(s,pat) described above

· minStemPat(s) described above (It will need to call finalPattern(s,pat) a number of times.

· parse(s) returns the strings (whole, stem, pat). It will

· strip the elipsis ('...') off of the end of the string s,

· break the string at the decimal point to find whole and the fractional part frac,

· call minStemPat(frac) to find the minimal stem and rep.

Your main routine inputs a line to determine if you are done. If not, parse the string and print the required line.

Problem 11: Repeating Decimals

Objectives: The student will write a program using a user-defined class.
Every repeating decimal can be written as a rational number. For example,

0.8333... = 5/6

6.428571428571... = 45/7
In order to see which rational number is represented by a given repeating decimal r, it is helpful to first find strings whole, stem, rep described in the last problem. The whole string represents the integer to the left of the decimal (if empty, it represents 0). The rep is a string representing one copy of the infinitely repeated sequence indicated by the elipsis ("..."). The stem is the (possibly empty) string between the decimal point and the beginning of the repeated part. It does not end with rep. Set m equal to the length of the stem and n the length of rep. Then

numerator = int(whole + stem + rep) – int(whole + stem)

[image: image2.wmf]

denominator

=

10

m

+

n

-

10

m

are integers, with ratio r. In our example, we have

	Decimal
	whole
	stem
	m
	rep
	n
	Rational

	0.8333...
	"0"
	"8"
	1
	"3"
	1
	
[image: image3.wmf]

83

-

8

10

2

-

10

=

5

6

	6.428571428571...
	"6"
	""
	0
	"428571"
	6
	
[image: image4.wmf]7

45

10

10

6

6428571

0

6

=

-

-

Input

Each line of input will be single repeating decimal ending with three period. There will be an empty line following the last line of input.

Output

Output each case on a single line. Count the cases starting with 1. There should be exactly one space between words, and no empty lines before or after cases. Fractions should be in lowest terms with positive denominators. If the denominator is 1, print only the numerator.

Sample Input

Expected Output

Program Specifications

Programs must have the following parts:

1. Fraction class that we developed in class. It will be used for all computations involving the rational number as well as its printing in lowest terms.

2. A function parse(r) that parses a string representing a repeating decimal r and returns the whole, stem, and rep parts of r as strings.

3. A function decToFrac(decimalString) that converts a repeated decimal to a fraction.

Why this scheme works:

To see why this repeating decimals are always rational numbers, use the following schematic diagram.

[image: image5.wmf]

r

=<

whole

>

.

<

stem

><

rep

><

rep

>

...

10

m

+

n

r

=<

whole

><

stem

><

rep

>

.

<

rep

>

...

10

m

r

=

<

whole

><

stem

>

.

<

rep

>

...

Subtracting the last two gives
[image: image6.wmf](

)

r

m

n

m

10

10

-

+

 on the left. On the right, the repeated parts after the decimal cancel leaving an integer. Consequently,

[image: image7.wmf](

)

)

int(

)

int(

10

10

>

><

<

-

>

><

><

<

=

-

+

stem

whole

rep

stem

whole

r

m

n

m

Dividing by
[image: image8.wmf]

10

m

+

n

-

10

m

 (which is a non-zero integer since at leasat one of m or n is positive) gives r as required.

0.83333...

6.428571428571...

1.1100101010101010101...

1.1...

.999...

<empty line ends input>

Case 1: 0.83333... = 5/6

Case 2: 6.428571428571... = 45/7

Case 3: 1.11001010101... = 109891/99000

Case 4: 1.1... = 11/10

Case 5: .999... = 1

<no spaces after output and no empty lines>

Case 1: 5.00123... -> ("5","00123","")

Case 2: 3.3333... –> ("3","","3")

Case 3: .08811110111101111... –> ("","0881111","01111")

<no empty line>

5.00123...

3.3333...

.08811110111101111...

<empty line>

List 1: The sum is 23/60 and the product is 1/720.

List 2: The sum is 15/16 and the product is 15/16.

List 3: The sum is 41/12 and the product is 1.

<no empty line>

3

1/2

–1/3

1/4

–1/5

1/6

15/16

2/3

3/4

2

<empty line>

_1201575785.unknown

_1327934865.unknown

_1327935780.unknown

_1327935779.unknown

_1201680052.unknown

_1201573930.unknown

_1201575159.unknown

_1201573296.unknown

